L.}
A » Form Approved @

MENTATION PAGE - OMS No. 07060188

AD-A218 42 :
113 €3UMated 1O avErIGE | NOUr OF FIOOME, INCIUBING LNE time 1OF I Astrucnons,
15 T . e T S

nare g the
this Durden, 10 wWasnington Mm Services, ( W
man?o the Qtfice of Management and Budqet. Paoerwors Reduction m“’“\ww M ms letteorson

2. REPQRT OATE 3. REPORT TYPE AND OATES COVERED

OTIC FILE copy

1. AGENCY USE ONLY (Leave wre.--.
| August 24, 1989 ELUAL _REPORT, 0] Apr 87 to 31 Mar 89 '
4 TITLE AND SUBTITLE S. FUNDING NUMBERS
PARAMETRIC MODELS FOR A,: SPLITTING PROCESSES AND MIXTURES | AFOSR-87-0192
6. AUTHOR(S) o
Bruce M. Hill 61102F 2304/A5
e e e T T S TS oo T S —————
7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) 8. PERFORMING ORGANIZATION
. . . . REPORT NUMBER
University of lichigan
Department of Statistics .
AnnArbor, MI 43109-1092 .
nnArbor 3 APOCRM. 90..(}2}2
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
AFOSR/NM AGENCY REPORT NUMBER

Building 410
Bolling AFB, DC 20332-6448

Y.y
11. SUPPLEMENTARY NOTES

12b. OISTRIBUTION COOE

12a. DISTRIBUTION/ AVAILABILITY STATEMENT

Approved for public release H

distributionunlimited, ,‘ B

e ——————— T ———————
13. ABSTRACT (Maximum 200 words)
> A class of parametzic models. called suhmng processes. is defined, us-

- - ing de Finetti’s concept of adherent mass. Such splitting processes give
rise to complex mixtures of distributions. It is proved _that the nonpara-
metric Bayesian predictive procedure, A, of Hill (1965), holds exactly for
a member of this clacs called a nested splitting process. It is also shown

that the generalization of Ancalled H., to deal with ties. can hold &€x: — — ‘
actly. A multivariate version of A.. based upon’?ﬁ?“ﬁ?m&g’"ﬁﬁcessu. - ‘
is proposed. Some general considerations concerning ties and adherent Cd
masses are discussed. as well as their connection witn the Dirichlet pro- \\
! N

cess. These include the phenomenon by 'which in the Dirichiet process, the
posterior predictive mass builds up at the observed points. while under
An. no mass is given to the observed points. and under A, some but not
necessarily all postenior predictive mass builds up at the odserved points.
A very general class of spiitting processes is then defined. which allows
for some of the adnerent inass at a point to be replaced by an exact tie,
It is proved that both the Dirichlet process of Ferguson and .. Can arise
as different special cases of this general model. /| | -

[ susiEcT TeRms 15. NUMBER OF PAGES
31

16. PRICE COOE

Y N T Yy T ——r—
17. SECURITY CLASSIFICATION ] 18. SECURITY CLASSIFICATION ] 19. SECURITY CLASSIFICATION | 20. UMITATION OF ABSTRACT
OF REPORT OF ABSTRACT

OF THIS PAGE
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SAR

NSN 7540-01-280-5500 Standard Form 299 (Rev. 2-89)
Srescrriond By ANS) o8, 23918




Parametric Models for A, : Splitting Processes
and Mixtures

Bruce M. Hill~

July, 1987
Revised August 24, 1989

Abstract

A class cf parametric models, called splitting processes, is defined, us-
ing de Finetti’s concept of adherent mass. Such splitting processes give
rise to complex mixtures of distributions. It is proved that the nonpara-
metric Bayesian predictive procedure, An, of Hill (1968), holds exactly for
a member of this class called a nested splitting process. It is also shown
that the generalization of 4,, called H,, to deal with ties, can hold ex-
actly. A multivariate version of A,. based upon the splitting processes,
is proposed. Some general considerations concerning ties and adherent
masses are discussed, as well as their connection with the Dirichlet pro-
cess. These include the phenomenon by which in the Dirichlet process, the
posterior predictive mass builds up at the observed points, while under
A, no mass is given to the observed points. and under H, some but not
necessarily all posterior predictive mass builds up at the observed points.
A very general class of splitting processes is then defined, which allows
for some of the adherent mass at a point to be replaced by an exact tie.
It is proved that both the Dirichlet process of Ferguson and 4, can arise
as different special cases of this general model.

KEYWORDS: Bayesian nonparametric statistics; prediction.

1 Introduction

A, and H, were proposed by Hill (1968, 1988b) for Bayesian in-

ference in the case of extremely vague a priori knowledge as to the

* This work was supported by the U. S. Air Force under grant AFOSR-87-0192, and by the
National Science Foundation under grant DMS-8901234. The US goverrunent is authorized to
reproduce and distribute reprints for Governmental purposes notwithstanding any copyright
notation thereon.
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form of the underlying distribution, 1.e., Bayesian nonparametric
prediction and inference. Such weak knowledge might be described
in terms of “data on a rubbery scale.” For example, it is known
that A, holds exactly when the observations are only simply or-
dered, as discussed in the above references, and this suggest that
it might hold approximately even when there is something more
than an ordinal scale of measurement. Earlier, Fisher (1939, 1948)
had suggested a version of A, from the fiducial point of view, and
Dempster (1963) had elaborated and made more precise this in-
sight of Fisher. Berliner and Hill (1988) applied the A, model to
deal with censored data in connection with survival analysis. Hill
(1980a) showed that 4, yields a robust form of Bayesian inference,
and provides approximations to many real-world situations. Hill
(1988b) gave a new subjective Bayesian argument for 4, reviewed
its history, and because of the minimal and realistic assumptions
underlying it, proposed A4, as a basic solution to the problem of in-
duction, as defined, for example, by Hume (1748). Also Lenk (1984)
showed that A4, arises from use of a log-Gaussian distribution for an
unknown probability density function, and discusses the relationship
between A, and use of the empirical distribution function.

In this article [ shall attempt to provide further justification for
A,, showing that it arises from simple parametric models, called
splitting processes, and can ordinarily be viewed as appropriate
when the data arise from the process of sampling from complex
mixtures of distributions. Although Hill (1968) proved that .4, can-
not hold for countably additive distributions for any n, it is known
from Jeffreys (1961, p.171) that A; and A, do hold for conventional
parametric models, and from the work of Lane and Sudderth (1978,
1984) that A4, is coherent in the sense of de Finetti for all n. Because
of its practical importance for Bayesian statistics, it is essential also
to understand precisely how A, for all n, can arise from simple
conventional statistical models.

In Section 2 we define two basic types of splitting processes, and
prove that the nested splitting process satisfies A,. Also a multivari-
ate version of 4, is proposed. Section 3 discusses some subtleties
involved in dealing with tied or grouped data, as in Berliner and
Hill (1988), and proves that H, can hold exactly. Then in Section
3 an even more general class of splitting processes is defined, and it




is proved that both the Dirichlet process of Ferguson and A, arise
as special cases of this model. Section 4 makes a few concluding re-
marks. The primary focus of this article is on predictive inference,
as in Aitchison and Dunsmore (1975), Geisser (1971, 1982, 1985).

2 Splitting Processes

In this section we shall propose an explicit parametric model for
An. Letzy fori =1,...,n, be the data values obtained in sampling
from a finite population, and let the z(;) be their ordered values in
increasing order of magnitude. Let X; be the corresponding pre-data
random quantities, so that the data consist of the realized values,
X;==z; fori=1,...,n. In this article, by A4, we shall mean the
following three assumptions:

1. The observable random quantities Xy,..., X, are exchange-

able. !
2. Ties have probability 0.

3. Given the data z; ¢ = 1,...,n, the probability that the next
observation falls in the open interval I; = (z(;-1),2(y), is ﬁ,
foreachi=1,...,n+1. By definition, z(o) = —00, and 2(n41) =
+00, unless explicitly stated otherwise.

We begin by recalling that A; and A, can be obtained by the use
of improper prior distributions on the location, and on the location
and scale parameters, respectively, of a normal distribution. See
Jeffreys (1961, p. 171), Hill (1968, p. 688). For example, in the
case of A,, if u has an improper prior distribution represented by
Lebesgue measure, and if the distribution of the error is N(0, 1),
then given X, = z,, the posterior distribution of u is N(z,, 1), and
the posterior predictive distribution for X, is N(z;, 2). Hence the
posterior probability that X, > z; is 1/2. Similarly, in the case of asion For
unknown g and o, if these parameters are given the conventional ﬁ;

. . . . e GRAXI

improper joint prior distribution of Jeffreys, then A; holds. For ,,g

n > 2, until now 4, had not been obtained, constructively, by Lounced O
tfication

'In Hil! (1968, 1988b) exchangesbility was not included in the definttion of Ay in order to
include more general situations, such as partial exchangeability.
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means of parametric models and improper prior distributions. Lane
and Sudderth (1978) proved an existence theorem to the effect that
finitely additive distributions satisfying A, for each n exist, but
did not explicitly model such distributions. Here we give explicit
parametric representations that can hold for all n.

The first step in our construction is to introduce the concept of
adherent mass at a point. This is an extremely simple and useful
concept, due to Bruno de Finetti (1974, p. 240), that arises in the
finitely additive theory of probability. Before making precise defi-
nitions, we shall motivate this concept in connection with the joint
distribution of two variables, X', and X, which will later represent
the first stage in our iterative construction of a splitting process
satisfying 4,. Let X'; have distribution 7, where 7 is any fixed dis-
tribution on the line. We now describe the conditional distribution
of X,, given X; = z;. With probability 1/2, X', is given the distribu-
tion =; with probability 1/2, X, is adherent to z,, with conditional
probability 1/2 of being larger than z,, conditional probability 1/2
of being smaller than z,, conditional probability 0 of being equal
to z;, and with conditional probability 1 of being within any open
interval containing z,. Such adherence car be obtained as follows.
Imagine that, given X, =z, X, —z, 1s equal to 1/K for some non-
zero integer K, where K has a distribution symmetric about 0. If
K has a diffuse finitely additive distribution on the integers, so that
there is probability 1 that K is larger in absolute value than any
finite constant, the result follows easily, since K must be some finite
integer, so that X, — z; cannot be 0, and with probability 1, 1/K
will be smaller in absolute value than any positive constant. The
concept of adherence does not depend upon symmetry, althor sh this
1s the primary case of interest in this article. Also, one can place
some positive mass exactly at the point, z,, which will be discussed
in Section 3 in connection with ties and the Dirichlet process of
Ferguson.

Such distributions may at first sight appear rather exotic, but
this is not really the case. They correspond to a situation where
no possible measurement can differentiate between a value and 0,
for example, even though the quantity in question is known not to
be equal to 0. In this case neither empirically nor theoretically can
one rule out such adherent distributions. Thus we may know that




a particle has positive mass, but i1ts mass may be so small that it is
enormously beyond the powers of our technology to determine the
exact value. It may only be possible in finite time to determine that
the value is less than some specified positive €. Indeed, looked at too
finely, it may turn out that there is no fixed exact numerical value,
but rather that the quantity in question is constantly fluctuating.
Similarly, consider a large positive integer, for example the total
number of subatomic entities in the universe, where it is assumed
for the sake of argument that this quantity is well defined. Since any
such entity may eventually turn out to be itself divisible, it is clear
that in any specified finite time the most that can be done (apart
from purely theoretical arguments) is to place a lower bound on such
a quantity. From a subjective point of view, one might well have
probability 1 that this integer, although finite, is larger than any
number that has ever been specified. Such a K would be adherent
at +oc. Its reciprocal would be adherent at 0.

It is not necessary that one views such situations as holding ex-
actly. Indeed, the primary purpose of the concept of adherence
is merely to provide useful approximations and ways of thinking
about very common situations. I think that clear understanding
of the property of adherence is necessary in order to deal with ties
and the grouping of data, such as in H,, and in understanding the
behaviour of the Dirichlet process. This will be discussed further in
Remark 5 of the present section and in Section 3. For our purposes
at present it suffices to observe that such finitely additive distribu-
tions are known to exist, so that the description we have given for
generation of X} and X, is a coherent one in the sense of de Finetti,
i. e., no Dutch book is possible. If desired, they can equally well be
represented in terms of improper prior distributions. For example,
a uniform weight of unity for each positive integer generates adher-
ence at 0 for the reciprocal of such an integer. For the most part,
we will use the language of the finitely additive theory, which is
fully rigorous, and whose foundations were developed by de Finetti
(1974) and L. J. Savage (1972). See also Dubins (1975), Schervish
et al (1984), and Hill and Lane (1985). Rényi (1970) and Hartigan
(1983) provide rigorous theories of improper prior distributions and
conditional probability spaces.




Since most probabilists and statisticians accept the countably
additive framework, and therefore might immediately reject such
concepts as that of adherent mass, it may also be useful to point
out that the axiom of countable additivity (or continuity) has never
been justified other than by expediency. For example, in the book
which founded the modern measure-theoretic treatment of proba-
bility, Kolmogorov (1950, p. 15} says:

For infinite fields, on the other hand, the Axiom of Conti-
nuity, VI, proved to be independent of Axioms I-V. Since
the new axiom is essential for infinite fields of probabil-
ity only, 1t 1s almost impossible to elucidate its empirical
meaning, as has been done, for example, in the case of
Axioms -V in 2 of the first chapter. For, in describing
any observable random process we can obtain only finite
fields of probability. Infinite fields of probability occur
only as idealized models of real random processes. We
limit ourselves, arbitrarily, to only those models which sat-
isfy Aziom VI.? This limitation has been found expedient
in researches of the most diverse sort.

Although expediency is important, it is hardly a matter of fun-
damental truth. For this reason I ask the indulgence of the reader to
pursue further some of these ideas, even though at first glance they
may seem unusual. The issues concerning countable additivity have
some important implications for the theory and practice of statis-
tics. For example, Ramakrishnan and Sudderth (1988) have shown
that even in the simplest of all probability scenarios, that of flipping
a fair coin, Borel’s Strong Law does not hold in the finitely additive
context. These authors show that with exactly the same joint distri-
butions for all finite sequences, i. e., probability 1/2* for any k-tuple
of 0’s and 1’s, one can have the average converge everywhere to 0,
converge everywhere to 1, or fail to converge everywhere. For the
practice of statistics, these issues boil down to questions as to choice
of approximations. We shall see in Section 3 that both the Dirichlet
process and A, can be seen as special cases of a very general class
of splitting processes, with the Dirichlet process substituting exact
ties for the adherent mass distributions.

2 Author's italics.




We shall now make a few definitions which will enable us to
operate with such adherent distmibutions, and to define a splitting
process.

o Definition 1: A probability distribution is said to have adherent
mass at a point (finite or infinite) if the infimum of probabili-
ties of all open neighborhoods of the point is greater than the
probability of the point itself. It is said to have a purely ad-
herent mass at a point if it has an adherent mass at the point
and the probability of the point itself is 0. Such language is
also used for random quantities with such distributions.

o Definition 2: A random quantity is said to be negligible if it
has a mass of unitv adherent to 0.

¢ Definition 3: Two random quantities are said to be equivalent
if their difference is negligible.

e Definition 4: A distribution is said to be diffuse at ~oo if it
has a purely adherent mass of unity at +oc, diffuse at —o0 if it
has a purely adherent mass of unity at —oc, and diffuse at oo
if it has a purely adherent mass of 1/2 at each of ~a¢ and —o0,
respectively. (When = is diffuse at oo, and a random quantity X
has distribution 7, we shall sometimes say that X splits from oo,
or is generated from oc. When X has a distnibution for which
all of the mass is adherent to a point. z;, we shall sometimes
say X splits from z.)

It follows immediately that a finite sum of negligible quantities
is negligible, and that a diffuse distribution attaches probability 0
to any finite interval. Special diffuse distributions are used by some
Bayesians to represent a form of ignorance. The improper uniform
prior distribution for a location parameter, and for the loganthm of
a scale parameter, as in Jeffreys (1961), are familiar special cases.
These can be given a finitely additive interpretation as well. One
can also strengthen the notion of diffuseness by requiring that the
conditional distribution for a particular value, conditional on a finite
set of values, be uniform. as in Hill (1980c).

We now prove a simple ilemma that will add insight as to the
nature of adherent mass, and be used in our proof of Theorem 1.




Lemma 1 If X and Y are equivalent random gquantities, then their
distribution functions at a point = are identical, provided that neither
random quantily has mass adherent at z.

Proof:

Let F(t) = Pr{\ <t} and G(t) = Pr{Y <t} be the distn-
bution functions for X and Y, respectively. Let ¥ = X + ¢, where
€ is negligible. Then partitioning the event {}" < 2} according to
whether or not X' > z - §, yelds

Pr{Y <z} <infsoPr{X <z +§}

Hence

G(z) = F(z) Sinfss0lF(z +8) - F(z2)l.

If this infimum is positive, then the distribution of X has positive
mass adherent at z. Reversing the roles of X and Y, we see that also

F(z) = G(z) <infs0lG(z +8) — G(2)).

Thus if neither distribution has mass adherent at z, then both infi-
mums must be 0, and then F(z) = G(z).
VA

As de Finetti (1974, p. 242) points out, it is preferable to de-
fine the distribution function for random quantities, not for either
closed or open intervals (to obtain right or left continuity, respec-
tively, in the countably additive theory), but rather to think of the
distribution function as indeterminate at discontinuity points. This
idea is consistent with the view that a mass exactly at a point may
be, practically speaking, indistinguishable from a mass adherent at
the point, in which case the value of the distribution function at the
point should be viewed as indeterminate.

There are some subtleties that arise in the finitely additive the-
ory that are worth mentioning explicitly. Although a mass purely
adherent to 0 is for practical purposes indistinguishable from a mass
exactly at 0, the two associated random quantities are not logically
identical, since the first is certain not to be exactly 0. In dealing with
such things we must therefore take greater care than is customary
in the conventional countably additive theory. For example, strictly
speaking, a random quantity with mass exactly at 0 would not be




exchangeable with one having the same mass purely adherent at 0.
One might nonetheless call such random quantities exchangeable up
to negligible differences. See also Remark 8 below.

We now proceed to construct a splitting process. Let X, and X,
be defined as before. Given .X'; =z, and X', = z,, we generate X; as
follows. With conditional probability 1/3, X3 is generated according
to m; with conditional probability 1/3, X'; is generated from a sym-
metrical distribution purely adherent at z;; and with conditional
probability 1/3, X3 is generated from a symmetrical distribution
purely adherent at z,. This procedure can be continued iteratively.
After X; = ¢, 1 = 1,...,n, have been obtained, the conditional
distribution of X, . is equally likely, with common probability 1/(n
+ 1), to be generated from = or to have a symmetrical distribution
purely adherent to each of the n distinct values, z;, already gener-
ated. In other words. X', is equally likely to split from each of the n
+ 1 points, oc,Zq,...,Z, 1he observations are generated sequen-
tially in time, so that we can speak of X; as the i*? point generated.
Finally, joint distributions of the X'; are defined so as to be forward
disintegrable (or strategic) in the sense of Dubins (1975), Lane and
Sudderth (1984), i. e., probabilities for future observations can be
evaluated as expectations of conditional probabilities, given previ-
ous observations. We call such a sequence X, ..., X, for any fixed
m, a nested splitting process.

We shall assume, for simplicity. that the finitely additive distri-
butions for # and the adherent mass distributions have been defined
for all subsets of the line. By virtue of de Finetti's fundamental the-
orem of probability, it is alwavs possible coherently to extend any
partially defined coherent evaluation of probability to all subsets,
de Finetti (1974, p. 111), Lad et al (1987). Finally, exchangeability
in the finitely additive context will be defined in terms of equality
of joint distributions, in the sense of equality of joint distribution
functions evaluated at finite points, just as in the countably additive
case. See, however, Remark 8 below.

Theorem 1 For a nested splitting process, with = diffuse at oo, A,
holds ezactly. If = 1s any distribution with neither adherent nor
positive mass at finile points, then exchangeability still holds, and
ties have probability 0.




Proof:

That ties have probability 0 follows immediately from the defini-
tion of pure adherence and the fact that = has no adherent or positive
mass at finite points. That the conditional probabilities are in ac-
cord with 4, when = is diffuse may be seen as follows. Let X; =z,
fori = 1,...,n, with all of these values distinct. and consider the
conditional distribution of X',,_;. (Note that in the finitely additive
theory all conditional distributions automatically satisfy the axioms
of probability, as with full conditional probabilitv distributions. See
Dubins (1975) and Hill and Lane (1985).) Now let I; be the open
interval between z(,_;) and z(;), fori = 1,...,n — 1. First take 1
to be between 2 and n. so that the I, are finite intervals.  Since /;
is finite and 7 is diffuse, if \',,_; is generated from =, then there is
probability 0 that X ,_, will fall in I;. Similarly, unless X, splits
from either z(;_;) or from z,), there is probability 0 that X', will
fall in ;. Conditional upon X, ; splitting from z(;, the probability
that it falls in I;is 1/2. and similarly if X ., splits from z(;_;). Since
there are n + 1 equally likely possible sources for X, .,, including
7, it follows that the probability that X, ., falls in I, is exactly 1/(n
+ 1). When 7 is diffuse, this is also trueif i = 1 or1 =n + 1,
in which case the interval I; is semi-infinite. For example, if 1 = 1,
then (ignoring events of probability 0) in order for X, .y to be in I,
it must be the case that either X, splits from z(;). or else that it
is generated from =. In the latter case, because = is diffuse at =,
there is probability 1/2 that X', ., will be smaller than z(;). This
vields 1/(n + 1), as before, for the posterior predictive probability
that X,., will bein /;. Similarly fori = n - 1. This completes the
proof that the conditional distribution for X,-; is in accord with
A, when 7 is diffuse.

We now prove that .X'1...., .\, form an exchangeable sequence,
for any m which has no adherent or positive mass at finite points.

By first conditioning on .\'; = u, and then using disintegrability
to integrate with respect to u, we have, for s, < s,,

Pr{X; <syX;<a} = /" Pr{X; <s; X, = ulr(du)

o0

/" 1/2 7(sg) < 1/2 =(du)

¢
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= 1/27(s1) 7(s2); ~ 1/2 ®(s1),

where 7(s) is the mass attached to the closed interval from —oo to
s by #. With a similar evaluation for the case s; > s;, we obtain
the joint distribution,

Pri{X, <s,,X3 <s,3} =1/2i7(s1) m(s2)] + 1/2 ®(s1 A 52),

where s, A sy is the smaller of s; and s,. This function is symmetric
in its arguments, proving that X; and X', are exchangeable.

By conditioning on the first k variables and using disintegrability,
similar evaluations can be made for the higher dimensional distri-
butions. Let F(®(s,,...,s,) be the joint distribution function for
the first k random quantities, for k = 1,...,n + 1. Then it is easily
verified that

k
F(hl)(sla---ask-l) = 1/(]0‘1) {ZF(,‘)(SI)"~)si—l)siAsH1)5i+17-"75k) .
i=1
+ w(shl)F(k)(sl,...,sk)],
where for i = 1in the above sum we take (s1,...,8; 1, 8;/AS k1, Sit1, -8 k) =

(81 /M Ske1yS2, -y Sk)

Using the iterative character of such functions, it is easy to see
that the joint distributions are symmetric functions of their argu-
ments, which proves exchangeability. In the diffuse case, the joint
distribution functions are in fact constant at finite points. For k =
1 the constant is 1/2, for k = 2 it is 3/8. If ¢4 is the constant for a
k-dimensional joint distribution, then czuy = cilk + 1/2]/(k + 1].

A

A few remarks may be useful to understand the above construc-

tion.

e Remark 1: When 7 is not diffuse A, does not hold exactly,
since given that X,.; is generated from =, the probabilities
of the I; depend upon = and the z, However, A, still holds
asymptotically as n — oo, in the following sense. Suppose
that we take a union of k, of the I, where k, — oo. Since

11




the probability that X,_, is generated from = is only 1/(n
~ 1), the posterior predictive probability for such a union is
asymptotically the same as under diffuse .

Remark 2: A diffuse = 1s adherent at oo, attaching probability
1/2 to any semi-infinite interval, and probability 0 to any finite
interval. In the case of known bounds for the data values, one
or both of the infinite points of adherence can be replaced by
finite points. For example, if it is known that all variables are
positive, then we can put in points of adherence at 0 and at
~+00, with each being equally likely. In other words, given that
the point is from =, it now has probability 1/2 of being within
any neighborhood of 0, and probability 1/2 of being within
any neighborhood of ~oc. Similarly, if there is a known upper
bound for the observations, the point at ~oc can be replaced
by such an upper bound. In the case of survival analysis, as in
Berliner and Hill (1988). the times from treatment to death are
non-negative, so we use the lower bound of 0 in place of —oc.

Remark 3: In the finitely additive theory all that was done
above would remain valid if we were to deal with distributions
concentrated on the rationals, instead of the real numbers. In-
deed, this would ordinarily be the more realistic case.

Remark 4: In our definition of adherency, we could have allowed
some positive mass to be placed exactly at the point. In this
case some observations would be exactly tied, as in H,. See
Section 3. Also, it may be observed that the theorem remains
true when symmetry of the adherent distribution of errors is
weakened and replaced by the assumption only that it is equally
likely that errors are positive or negative.

Remark 5: A subtle but important point is that in the context
in which we are working, all distances are relative. Suppose
that X', has split from X';, and X3 has split from X ;. The real-
ized values, the z;, can be visualized as such that the distance
between z3 und z, is negligible compared to that between z,
and z;. In other words, the former distance can be microscopic
relative to the latter distance, despite the fact that under the
concept of adherence, one initially viewed it as certain that X,

12




and X'; would be extremely close. (Since z; cannot be exactly
the same as &, it is only a matter of relative distances; there is
no absolute meaning to the word ‘close’.) For example, with re-
spect to the distances, one can think of a planet circling a sun,
and with some satellite circling the planet. The concept of ad-
herence, as interpreted in a practical and approximate sense,
can allow for some very natural and familiar kinds of relation-
ships between points, and can deal simultaneously with both
macroscopic and microscopic distances.

Remark 6: A splitting process as defined above cannot be con-
structed exactly by human endeavours. For that matter, nei-
ther can a uniform distribution on a finite interval. However,
one can obtain approximations to such uniformm distributions
and other continuous distributions. Such approximations can
then be used, with care, to obtain appoximations to our split-
ting process. For example, in this spirt, let # be a Cauchy
distribution. Define a primary point to be a point generated
directly from =. For splits from a primary point such as z,,
let the error be normal with mean 0 and standard deviation
1. For splits from a secondary point, i. e., a point that has
itself split from some primary point, let the error distribution
be normal with mean 0 and standard dewviation .01. For splits
from a tertiary point, let the error distribution be normal with
mean ( and standard dewviation .0001, etc.

Remark 7: There is an interesting, but incorrect intuition about
A, that is worth discussing. The initial reaction that some
have to 4, is that it is unreasonable because it gives the same
weight to enormously long finite intervals and extremely short
intervals. A simple answer to this objection is to point out
that perhaps the reason that an interval is very long is because
there is little mass in that region, and the reason that other
intervals are short is because there is substantial mass nearby.
The nested splitting model provides a framework for this second
intuition. In it each point is, so to speak, the center of its
own universe. The model implies that there will be a group of
sparsely distributed primary points, and around each of these
there will be a network of sparsely distributed secondary points,
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etc. Such secondary points appear close together when viewed
from the perspective of their associated primary point, but they
appear sparsely distributed when viewed from the perspective
of the tertiary points. The process is self-similar in the sense
that the microscopic network of points that have split from
some common ancestor, or have split from descendants of that
ancestor, has the same character, no matter at what level that
ancestor occurs. There are connections here with some of the
concepts of fractile geometry, Barnsley et al (1988), Mandelbrot
(1982). For a nested splitting model, the intuitions that stem
from a naive interpretation of Lebesgue measure are simply not
appropriate. :

Remark 8: An example of David Lane (private communica-
tion) shows that exchangeability in the finitely additive case
may have some surprising implications. For the nested split-
ting process, given =, and that X, splits from z,, there is prob-
ability 1/2 that | X, | > | z, |; given z; and that X, splits
from oc, there is probability 1 that | X, | > | z; |; so given z;,
there is a probability of 3/4 that | X, | > | z; | . Integrating
with respect to z,, we obtain 3/4 for the unconditional proba-
bility that | X, | > | X, |, rather than 1/2, as one might have
expected. This does not contradict exchangeability of the X;
in the sense we have defined it, which is the usual sense, but
shows that in the merely finitely additive case exchangeability
for the X; does not imply exchangeability for the | X;|. (In the
countably additive case, exchangeability for the X; does imply
exchangeability for the | X;|. To understand why this need not
be true in the merely finitely additive case, observe that in this
case the complete probability distribution is not determined by
the probabilities of rectangle sets, and therefore not by the joint
distribution function. The event | X, | > | X} | is not a rectan-
gle set.) Plainly there are a number of quite subtle issues that
arise with regard to the precise definition of exchangeability in
the finitely additive case. We chose to define exchangeability
in terms of invariance of the joint distribution functions both
because this is the familiar definition in the countably additive
case, and also because the definition in the finitely additive case
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has not yet been given serious attention, so we did not want to
get involved with such intricacies in the present article, which
is about statistical inference. If one wishes, one can regard
exchangeability in the sense of equality of joint distribution
functions as a form of weak exchangeability. In this case we
have only proven weak exchangeability of the X, However, for
the practical purposes of statistical inference being discu-sed
in this article, this would seem quite sufficient.

In Lane’s example, note that the marginal distributions for
the | X; ' are all the same, but not the joint distnbutions.
A similar phenomenon occurs in connection with (4) of Hill
(1968, p. 679), since (4) implies that the X(;, all have the
same marginal distribution, although it is certain that they are
in strictly increasing order.

The theorem shows that the probabilities specified by A, can be
realized exactly in theory. In our construction of the splitting pro-
cess the time order was relevant to the realization of the process, or
creation of the data. For example, X, could have split from infin-
ity or from the already realized z,, which requires the existence of
T, before the determination of X';. But we have also proved that
the process so engendered is exchangeable, which implies that proba-
bilistically this time order is immaterial, since under exchangeability
the joint distributions are invariant under permutations. For a re-
lated situation consider the discussicn of the relationship between
the Pdlva urn model and the Bayes-Laplace model in de Finetti
(1974, p. 220), or the discussion of ‘contagion’ in Feller (1971, p.
57). Although two processes may be structurally different, the ex-
pression of our probabilistic knowledge about them can be precisely
the same.

Because of the fact that the sequence z,,...,z,, generated by
a splitting process is exchangeable, we can forget the time order-
ing for the purposes of statistical inference. Thus we can instead
consider a population of values X, ..., X n, that originated from a
splitting process, but now is simply an existing population of num-
bers. By construction these values are necessarily distinct, so that
the ordered values are .\'(;) < X3y < -+ < X(n). Of course, before
the process is realized, one can visualize the process as creating a
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random distribution, in which the probability attached to a set is
simply the proportion of X in the set. However, in the present in-
ferential context we will imagine that the values have already been
generated, but unobserved. In the subjective Bayesian theory, so
long as there is no further information about the population val-
ues X, it 1s appropriate to use the same distribution after, just as
before, they were generated. See Hill (1988a) for discussion. Now
suppose a simple random sample of size n, without replacement, is
taken from such a population, and the observed ordered values in
the data are z(;) < z(3) < -+- Z(n), as in Hill (1968).

Because of the exchangeability, one can suppose that these values
are actually the first n values created by the process, so that A,, and
indeed A y_1, is automatically satisfied in sampling from a popula-
tion Xy, ..., Xy that is created by a nested splitting process. It was
proved in Hill (1968. p. 688) that .4, implies 4 for j < k, so in fact
Aj can hold for any j < N. If one generates an infinite number of
points, then A4, holds for all n, as for example in Lane and Sudderth
(1978). If we define 4; to be the proportion of the unsampled popu-
lation falling in the interval (z(;_1),z(;)), and if the population size
is infinite, then it follows from a result of Hill (1968, p. 686) that A,
for all n imphies that § has the uniform Dirichlet distribution on the
(n + 1) dimensional simplex, no matter what values the z(; take
on. There is a finitely additive version of de Finetti’s theorem for
exchangeable random quantities, which suggests that the usual in-
terpretation in terms of an ‘unknown’ distribution, representing the
limiting frequency of points in various sets, is still valid, although
uniqueness of the de Finetti measure is lost. See de Finetti (1937),
Hewitt and Savage (1953), Lane and Sudderth (1978), Savage (1972,
p. 53), Diaconis and Freedman (1980, 1981), and Hill (1988b) for
some related discussion.

There 1s a second basic type of splitting process closely related to
the first that is worth mentioning. Let X; be generated as before,
but instead of observing it, suppose that we observe Y;, which differs
by a negligible quantity from X,;. Given Y; = y,, with probability
1/2 let Y, be purely adherent to X;; and with probability 1/2, let Y,
be generated by first generating X, from 7, and then taking Y5 to be
purely adherent to .X',. Continue in this way. The data generated
will consist only of the y,; values, with the z; playing the role of
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unseen quantities, somewhat like conventional parameters. For this
reason, notationally we will replace the X; by u; for such a process,
and think of the u; as conventional location parameters. For this
process, after n points have been generated, with m distinct g, the
probability that the next point is from a new p; is taken as 1/(m
+ 1), instead of 1/(n — 1) as in the nested splitting process for the
probability of a split from oc.

The process generated in this way leads to an exchangeable se-
quence of observables, 17, in which ties have probability 0. The
proof of exchangeability follows the same lines as in the theorem.
However, this process is conceptually quite different from the nested
splitting process, and does not satisfy A, but rather a modified ver-
sion of A,. In the original process one generates a nested array. For
example, if the second value splits from the first, and then the third
from the second, we may visualize this as the third being a satellite
of the second, and the second as a satellite of the first. In three
dimensions, for example. one can think of a moon of a planet of a
sun. (Of course, our points are on the line and are not in orbit, and
so we might take the projections along some ray of the positions on
a particular date of all bodies, relative to some fixed origin, as deter-
mining the variable of interest.) With the second process, and with
Y1, Y5 and Y3 all splitting from g;. we would instead visualize as the
data the positions of three planets circling a sun, which would not be
part of the data. We shall refer to the second process as a planetary
splitting process. In this analogy each sun corresponds to a u,, and
the y; represent the positions of the planets. The nested splitting
process can be viewed as generating a heirarchical random effects
model, while the planetary splitting process generates a one-way
random effects model, in the analysis of variance. See Lindley and
Smith (1972) and Hill (1965, 1977, 1980b) for Bayesian inference in
random effects models.

Both of these processes engender mixtures of populations. For
the first process, we can classify as a ‘type’ all those points that
originate by splitting from the same primary point. For the second
process, we can classifv as a ‘type’ all those points that originate
from the same ‘sun’ or ‘nucleus’, i. e., with the same x,. The reason
that a planetary splitting process need not satisfy 4, 1s because the
interval between two y, that come from the same u , may have smaller
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probability for including the next observation than an interval that
corresponds to points from different p ;. (The exact values for such
probabilities depends upon further specification of the adherent dis-
tribution of errors, which we shall not go into here.) However, it
i1s easy to see that a modified version of A, is satisfied. Suppose
that we have observed n points y;. Under the assumptions of our
model there would be extremely high probability that one can break
these up into some number m of non-empty groups or clusters, each
corresponding to the same sun or nucleus. Indeed, returning to the
stellar example, no one would ordinarily have difficulty in deciding
to which solar system a particular planet belongs. Suppose, for ex-
ample, that there are m clusters, with n; points belonging to the it
cluster, where n; > 1 and ¥, n,; = n. Instead of using the intervals
I; between the md1v1dual observations as originally defined, we take
the intervals I; between the ordered group averages, say the ¥(i)»
t =1,...,m. Now it 1s easy to see that the next observation will
satisfy Am. Indeed the argument is precisely the same as that given
in the proof of the theorem, but with n replaced by m.

We have seen that 4, can hold exactly. Since the adherent masses
can be represented in terms of infinitely many different limiting
distributions. the two splitting processes we have defined are not
unique. It is an open question, however, as to whether there is a
basically different model from the nested splitting process that gen-
erates A4, exactly.

Finally, it is interesting to note that the splitting processes we
have defined can immediately be generalized to higher dimensional
spaces, for example, to the surface of a sphere, 3-dimensional Eu-
clidean space, higher dimensional versions of these spaces, and in-
deed to any surface or space whatsoever. One need only generate
points from an appropriate distribution 7, and then define adherency
in an appropriate way, using, for example, some metric in the space
under consideration. Such generalizations lead to multivaniate ver-
sions of A,,. For example, in 2-dimensional Euclidean space, one can
take 7 to be diffuse in the sense of attaching probability 1 to the
complement of any finite open sphere, with a purely adherent mass
of 1/4 at each of the four points at infinity; and the adherent dis-
tribution of mass at a point can be taken as spherically symmetric
about the point, giving mass 1/4 to each of the 4 quadrants formed
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with the point as origin. In this case there would be probability
1 that the next observation will be within any open sphere about
a point, given that it splits from that point. In n dimensions we
would attach probability 1/2™ to each of the quadrants formed by a
point as origin, given that a split occurs from that point, again use
spherical symmetry. and take = to have a purely adherent mass of
1/2™ at each of the 2™ points at infinity. One can proceed similarly
on the surface of a sphere, except that now the symmetry must be
restricted to the surface of the sphere. For more general surfaces and
spaces there may be other notions of diffuseness and symmetry that
are of interest. Also, in Bayesian survival analysis, as in Berliner
and Hill (1988), there are a variety of different ways to introduce
a multivaniate version of .4, to allow for covanates. This will be
discussed further in a separate article.

3 Ties and the Dirichlet Process

Suppose now that a splitting process, either nested or planetary,
generates X, ..., X y, to form a random population consisting of N
distinct values. Let .X(;) < X(3) < --+ < X(n) be the order statistics
for this finite population. Let M be the random number of (non-
empty) types or groups in the population, where two units are in the
same group if they have a common primary ancestor for the nested
process, and are in the same group if they have split from the same
u for the planetary process. In the general case two units belong to
the same group if their values differ in their generation by negligible
quantities in the sense of Definition 2. Let the i*h group have the
random positive integer L; of units. The units in this group will
not have exactly the same value, but under the model their values
are likely to be relatively close. Let X; be the i*h group average,
and let X () be the i*" ordered group average, in increasing order
of magnitude, for ¢ = 1,..., M. It is convenient to speak of the i*
group as having the common ‘value’ X, although the actual values
in the group are necessarily distinci. Note that for such splitting
processes the random vector L = (Ly,..., L p) will necessanly be
exchangeable, with L; > 1, and ?:ll L;=N.

Without using the notion of a splitting process, and with the
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types being defined by ezact ties, rather than merely through ad-
herency as in the present article, such a model was introduced in
Hill (1968, Section 3) to generalize 4, for the case of ties. In that
model, denoted by H,, there is an arbitrary distribution for M, given
N.1 < M < N, an arbitrary exchangeable distribution for L, given
M and N, and (4) of Hill (1968, p. 679) 1s satisfied. Sampling from
such populations vields a posterior distribution for the remainder of
the population, i. e.. what is unseen, that generalizes the inference
under A,. Specific splitting processes, such as the nested or plane-
tary models, are more general in that the ties need not be exact, but
are less general in that they imply specific distributions for M, given
N, and for L, given M and N. In Hill {1968, 1980a) the Bose-Einstein
distribution for L. given M and N, was used for the purpose of in-
ference about the percentiles of the population; in Hill (1968) it was
used to obtain the posterior distribution of the number of distinct
types in the population, with a uniform prior distribution for M,
given N, and then generalized in Hill (1979) to a truncated negative
binomial distribution for M, given N; and in Hill (1970, 1974) it was
used to model Zipf's Law. Chen (1978, 1980) considered the general
symmetrical Dirichlet-multinomial distribution for L, given M and
N. Lewins and Joanes (1984) used this same model. Although none
of these articles was based upon the concept of a splitting process,
it is easily shown that the nested splitting process vields the Bose-
Einstein distribution. approximately, for the distribution of L, given
M and N, providing some justification for the original assumption.
We have proved that data generated according to the nested split-
ting process satisfies 4, exactly. Can we also so justify H,? The
answer 1s yes, since any process that generates 4, can automati-
cally be used to generate data from H,. For example, suppose the
splitting model is used to generate data X, 1 = 1,..., M, that sat-
isfies A,,. Now generate a random vector S of dimension M, that
has any exchangeable distribution, with S; > 1,71 =1,..., M, and
Y M S;= N. Define a new population, with N units. to consist of S;
units having the value X'\ fori =1,..., M. It is easy to venfy that
this new random population satisfies H,. Thus both 4, and H,
are coherent models {ur the data. The question as to which is more
appropriate raises some subtle and delicate questions concerning the
meaning of ties and groups. (Note that it is possible to generalize
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the above construction, since it is not essential to take N and the
S, to be integer valued. In this case one can take the S;/ =M, S, to
be arbitrary proportions.) We have therefore proved the following
corollary to the Theorem:

Corollary 1 If the property A, holds for a process, then it is pos-
sible to modify the process so that H, holds also, with an arbitrary
exchangeable distribulion for L, given M and N.

The original H, implies that some observations will be exactly
tied whenever N > M. In real world problems, ties can arise either
from grouping or rounding of untied data, as discussed above in
connection with splitting processes, or alternatively can arise from
the nature of the data, as with integer valued data. In the survival
analysis of Berliner and Hill (1988), the data are times to death
after treatment. Time is usually taken to be a continuous variable,
although some modern physicists dispute this, and argue that there
is a basic unit of time, the chronon, of approximate magnitude 1043
seconds, Whitrow (1980, p. 203). Clearly we are in no position to
argue one way or another on this question. Indeed, at a very basic
level, the nature of the measurement process itself is quite elusive
and sophisticated. See Jeffreys (1957, Ch. 5-6), Luce and Narens
(1987), Russell (1914), Whitehead (1920), and Whitrow (1980, Sec-
tion 4.7). However, for practical purposes, the situation is much
the same as that concerning the differentiation between a mass ex-
actly at 0 and a mass partly or purely adherent to 0, since again it
is beyond our technology to make measurements of sufficient preci-
sion. Of course, relative to other types of measurement, time can
be measured extremely finely. If time were measured sufficiently
accurately, it is unlikely that any two people would die at exactly
the same time after treatment, even if time is truly discrete. Thus
the untied model might be more realistic for such data. On the
other hand, in practice time must be treated very crudely, and so
our basic time unit may be weeks or months or even years. In this
case it is largely immaterial whether we regard the underlying time
variable as continuous, or discrete at a very refined level. Berliner
and Hill based their analysis on A, rather than H,, and argued
that when there are, for example, 3 deaths all grouped and called
at 8 weeks, one can deal with this by imagining that these 3 deaths
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were actually at distinct times quite close to the nominal value 8.
One can then use 4, to attach a probability of 2/(n + 1) to the
interval between the smallest and the largest of these true (but un-
observed) death times, and this yields a probability of about 2/(n +
1) for short intervals containing 8. This method is consistent with
the results from use of the nested splitting model, as will now be
explained.

Suppose that a finite population of N distinct values is generated
by a nested splitting process, as described at the beginning of this
section. Let the data consist of n distinct values z;, with m groups
or types, and »; > 1 observations at Z(;, where Z(;) is the ith or-
dered sample group mean, and > 2, n; = n. Note that under the
splitting models, it is a priori probabilistically certain that one will
be able to identify the various groups on the basis of their observed
values, even without some other means of doing so. Because of the
exchangeability, without loss of generality we can suppose that the
z; are the first n values generated from the splitting process. Then
given the data, the conditional probability that the next observa-
tion is of the same type as those in the i** ordered sample group
is n;/(n + 1). This process is a generalized Pdlya process, in which
such a probability is a linear function of the observed number of
units in a cell, and with in addition the possible creation of new
types. See Zabell (1982) for relationships with the sufficiency pos-
tulate of W. E. Johnson (1932). It is also a generalization of the urn
processes of Hill, Lane and Sudderth (1980, 1987). The Berliner-
Hill method for dealing with ties gives very nearly the same result,
namely, (n;~1)/(n +1). The slight difference arises because in the
one case we are talking about whether the next observation is of
the same type as the :** ordered sample type, and in the other case
we are discussing the mass to be attached to the interval between
the smallest and largest of the n; values that form the i** ordered
sample group.

Finally, it is interesting to compare the analysis from splitting
models, or from H,, with that from the Dirichlet process. This
process can be derived, as in Blackwell and MacQueen (1973), as a
generalized Pdlya process, which is itself a special form of splitting
process. In the notation of Blackwell and MacQueen, we have
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Pr{X,. € B|X1,...,X .} =pn(B)/ pa(X),
where p, = p + X2 ,6(X,), P(X; € B) = u(B)/u(X), é(c) de-

notes the unit measure concentrating at x, and X is the space of
observations.

Now generalize my original nested splitting process so as to in-
clude an additional parameter 7, for the probability that the next
observation is from =, and with equal probability (1 —#,)/n that
the next observations splits from each of the n realized z,; Then for
any open interval B, my model yields

Pr{X 1 € B} Ni...., X} = 7(B)xnatICu(B)+1/2 Do B x(1-n,)/n,

where C,(B) is the number of observations amongst the first n that
lie in B, and D ,(B) is the number of z; that are on the bound-
ary of B. With 7, = p(X)/In + u(X)], and for D,(B) = 0 this
is identical with the probability as given by equation (2) in the
Blackwell-MacQueen representation of the generalized Pélya pro-
cess. For p(X) = 1, we have my original splitting process. Note
that if p(X) = oc, then the above predictive probability is simply
=(B).

If we now make one further generalization then both the nested
splitting process and the Dirichlet process become special cases of a
single very general process. Define ;, to be the probability that the
next observation ties z(;), given the first n observations. Given that
Xn+1 splits from z(;) but does not tie z(;). let the mass 1 — r;, be
symmetrically adherent to z(;. In my original construction 7;, =0
for each n and 7 = 1,...,n, and 5, = 1/(n + 1). To obtain the
Dirichlet process of Ferguson (1973, p. 209) with parameters a and
M = a(X), weneed only set 7;, = l foreach nandi = 1,...,n, take
® =af/M, and 5, = a(X)/{n + a(X)]. In this case D ,(B) = 0 in the
above equation, which holds for all B, and is identical with equation
(2) of Blackwell and MacQueen. Note that if we thus choose the
parameters so as to yield the Dirichlet process, and if further we
assume countable additivity for the sequence of variables that are
generated by the process, then the process is identical with that
of Blackwell and MacQueen. Thus both the Dirichlet process and
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A, can be seen as quite different cases of such generalized splitting
processes. We state these results as a theorem.

Theorem 2 Let X;i =1,...,n,..., be a generalized splitting pro-
cess with parameters 7, and v,,. Then for 5, = 1/(n + 1), and
Tin = 0 for 1 = 1,...,n, the process 1s a nested splitting process.

Forn, = a(X)/in —a(X), and 7, =1 fori = 1,...,n, and un-
der the assumption of countable additwitly, the process is a Ferguson
Dirichlet process with parameter a.

Of course if the process is to be countably additive, we must
take 7;, = 1, since adherent mass distributions cannot occur in that
framework. Every countably additive model is necessarily finitely
additive, but the requirement of countable additivity forces one to
rule out certain parameter values in the construction of the gen-
eralized splitting processes. It should be observed that this re-
quirement also rules out conventional improper prior distributions
for parameters, since such distributions cannot be represented as
proper countably additive distributions. Yet such prior distributions
provide standard and useful approximations in ordinary parametric
Bayesian statistics. I believe that the same is true here. In fact, it is
well known that classical non-Bayesian inferential devices, such as
confidence procedures for Gaussian distributions, correspond in the
Bayesian framework to precisely such improper prior distributions.
(It follows from the continuity theorem of de Finetti (1974, p. 132)
that coherency is always preserved under passages to the limit. The
finitely additive distributions that we employ in this article, such
as the diffuse distribution 7 and the adherent mass distributions at
the points, can all be obtained as limits of proper distributions, and
these limits can all be equally well represented as improper distn-
butions.)

The primary problem with the standard Dirichlet process is that
with high probability it yields data for which the posterior predic-
tive mass piles up at what was observed. This seems unrealistic,
especially from a predictive point of view. In fact, in the words
of Ferguson (1973, p. 210): “There are disadvantages to the fact
that P chosen by a Dirichlet process is discrete with probability
one. These appear mainly because in sampling from a P chosen by
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a Dirichlet process. we expect eventually to see one observation ex-
actly equal to another.” This 1s precisely what 4, avoids, since all
the posterior predictive probability is placed on the open intervals
between successive order statistics; while H, is a more flexible pro-
cedure, which allows for various degrees of tied or nearly tied data.
In the H, model, it is the posterior distribution of M, given N, that
determines the extent to which future data will be tied, as can be
seen by integrating equation (11) of Hill (1968, p. 683) with respect
to this posterior distribution. For example, if M is believed to be
sufficiently large, given the data, then the posterior probability for
a tie becomes small; if M = N, then ties cannot occur.

Of course, one might object that under the adherence assump-
tion, taken literally, one expects that the observations will be ex-
tremely close together, and this is qualitatively similar to the situa-
tion for the Dirichlet process. In a certain sense this is true, but as
discussed earlier in Remark 5, the word ‘close’ has no absolute mean-
ing. If we look at different planets clustered around different suns,
we have data for which the distances between objects in the same
solar system are negligible compared to distances between diflerent
solar systems. Yet we would not ordinarily call our own planet close
to our sun. This highlights the essential relativity of all such consid-
erations. In any case predictions based upon A4, and H,, are quite
different from those based upon the Dirichlet process. Although
an interesting and important idea. of which the present theory can
be regarded as a generalization, the standard Dirichlet process does
not seem to allow for the flexibility of splitting processss, includ-
ing the various senses in which 4, and H, can be approximated
by different types of splitting processes. For example, = and the
distributions for the errors can be taken to be proper distributions,
such that the error distributions are tightly concentrated relative to
7. Although in our proof of Theorem 1 we employ diffuse distribu-
tions and adherent masses, we view these as only idealizations that
provide us with insight as to more realistic situations that involve
approximations. In the same way it is useful to have a concept of
a circle and a sphere, but without pretending that various bodies
(such as the planets) are exactly spherical. In the eloquent words of
B. Mandelbrot (1982), “clouds are not spheres, mountains are not
cones, coastlines are not circles, and bark is not smooth, nor does
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lightning travel in a straight line.”

4 Concluding Remarks

The theorem of Section 2 shows that A,. and therefore as an im-
mediate corollary, also H, can hold exactly. According to the usual
methodology of statistics, both Bayesian and non-Bayesian, to jus-
tify their use in practice one would have to argue on an a priort basis,
that the models that give rise to these procedures are appropriate
in the context of the specific example wherein their use is contem-
plated. This is meant in the same sense in which one attempts to
Justify the use of the Gaussian distribution on the basis of various
considerations, such as the central limit theorem. However, it is
well known that in practice no such arguments are ever more than
suggestive as to the possible appropriateness of a normality assump-
tion. For example, Poincaré (1912, p. 171) states in connection with
this distribution, “Tout le monde y croit cependant, me disait un
Jour M. Lippmann, car les expérimentateurs s'imaginent que c’est
un théoréme de mathématiques, et les mathématiciens que c’est un
fait expénmental,” or “everybody believes in the law of errors, the
experimenters because they think it is a mathematical theorem, and
the mathematicians because they think it is an experimental fact.”
See also Hill (1969, 1988b).

It is clear that even apart from questions concerning adherent
mass, and diffuseness of =, which are of course only meant as ap-
proximations, the nested and planetary splitting models are also at
best only suggestive as to the possible appropriateness of A, and H,,
in practice. It 1s not conceivable that one could ever prove that such
models (or any other, such as the Gaussian) are exactly true. What
is needed for the purpose of the practitioner is instead a heuristic
form of reasoning which allows him to use his considered judgment
as to why one or another model might be roughly applicable in
various kinds of examples. In my opinion A, and H, find their
best justification for the practitioner in connection with sampling
from complex mixtures of distributions, and Bayesian data analy-
sis. Splitting processes generate such complex mixtures of distribu-
tions, for example, with each primary point of the nested process,
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or each p of the planetary splitting process, serving as a component
of a mixture. Sampling from a real-wo:ld finite population that is
a complicated mixture of many component distributions gives rise
to data for which I believe that 4, and H,, can provide useful ap-
proximations. The approach to H, via mixtures also turns out to
be intimateiv connected to the Bayesian analvsis of random effects
models.

In conclusion, we have here constructed splitting models that
yield A, and H, exactly, have discusssed in the cited articles how
they arise as approximations, and have discussed the relationship
with the Dirnchlet process of Ferguson. A4, and H, appear often
to be appropriate, apart from situations where there is explicit and
substantial knowledge as to the form of the underlyving distribution.
They are in fact coherent versions of the conventional use of the
empirical distribution function. When one uses the latter for pre-
dictive purposes, one pretends that the next observation is certain
to tie one of the previous values. This is plainly unreasonable, and
A, and H, allow one to drop such a pretence, while preserving the
advantages of using a diffuse prior distribution for the values X;,
if one wishes. Furthermore, the more complexity and real-world
character that a problem has, the more these methods seem to be
favored over other methods of inference. It is my personal opinion
that even in cases where there is some strong parametric kncwl-
edge, use of 4, or A, would ordinarily be preferable, unless sample
sizes are quite small. Thus, when sample sizes are sufficiently large,
one can be virtually certain that any conventional parametric model
would be inadequate. And even if the data were from such a model,
the results from an analysis based upon that model would largely
agree with those based upon A,, anyhow, since both would tend to
agree with the empirical distribution function for intervals contain-
ing several observations. The main situation where one might want
to depart substantially from 4, and H,, is perhaps with very small
sample sizes, and very detailed and precise a prion knowledge as
to the underlying distnbution. Even here, it would not ordinanly
be because one particularly believes in the truth of the paramet-
ric model, but rather because use of the model allows convenient
smoothing. When n is small, one may wish to do more smoothing
than A, allows, in crder to get more precise results from the pos-
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terior distribution. This becomes a question of the utility of the
model. See Dickey and Kadane (1980).

A, was onginally suggested from a fiducial point of view. It also
has a confidence/tolerance interpretation. It is simple, intuitive,
coherent, and has several subjective Bayesian interpretations and
justifications. I hope that it will be used more widely by practition-
ers than has hitherto been the case.
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